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In 2013, MIT astrophysicist Sara Seager introduced what is now called the Seager
Equation (Refs. [20,21]): it expresses the number N of exoplanets with detectable signs
of life as the product of six factors: Ns¼the number of stars observed, fQ¼the fraction of
stars that are quiet, fHZ¼the fraction of stars with rocky planets in the Habitable Zone,
fO¼the fraction of those planets that can be observed, fL¼the fraction that have life,
fS¼the fraction on which life produces a detectable signature gas. This we call the
“classical Seager equation”.

Now suppose that each input of that equation is a positive random variable, rather
than a sheer positive number. As such, each input random variable has a positive mean
value and a positive variance that we assume to be numerically known by scientists. This
we call the “Statistical Seager Equation”. Taking the logs of both sides of the Statistical
Seager Equation, the latter is converted into an equation of the type log(N)¼SUM of
independent random variables.

Let us now consider the possibility that, in the future, the number of physical inputs
considered by Seager when she proposed her equation will actually increase, since
scientists will know more and more details about the astrophysics of exoplanets. In the
limit for an infinite number of inputs, i.e. an infinite number of independent input random
variables, the Central Limit Theorem (CLT) of Statistics applies to the Statistical Seager
Equation. Thus, the probability density function (pdf) of the output random variable log(N)
will approach a Gaussian (normal) distribution in the limit, whatever the distribution of
the input random variables might possibly be. But if log(N) approaches the normal
distribution, then N approaches the lognormal distribution, whose mean value is the sum
of the input mean values and whose variance is the sum of the input variances.

This is just what this author realized back in 2008 when he transformed the Classical
Drake Equation into the Statistical Drake Equation (Refs. [10,11]). This discovery led to
much more related work in the following years (Refs. [12–19]).

In this paper we study the lognormal properties of the Statistical Seager Equation
relating them to the present and future knowledge for exoplanets searches from both the
ground and space.
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1. Introduction

As we stated in the Abstract, the Seager equation is
mathematically equivalent to the Drake equation well
known in SETI, the Search for ExtraTerrestrial Intelligence.
Actually, all equations simply made up by an output equal
to the multiplication of some independent inputs are
equivalent to the Drake equation. For instance, the Dole
equation that applies to the number of habitable planets for
man in the Galaxy, was studied by this author in Ref. [13]
and in Chapter 3 of Ref. [15] exactly in the same mathe-
matical way the Drake equation was studied earlier by him
in Refs. [10,11], and the Seager equation is studied in this
paper. More prosaically, all these equations simply are the
Law of Compound Probability that everyone learns about in
every course on elementary probability theory. Sara Seager
herself modestly called her equation “an extended Drake
equation”. Therefore, we prefer to describe the following
important transition from the classical equation to the
statistical one with the language of SETI, and so we now
introduce first the classical, and later the Statistical Drake
equation.

2. The classical Drake equation (1961)

The Drake equation is a now famous result (see Ref. [1]
for the Wikipedia summary) in the fields of SETI (the Search
for ExtraTerrestial Intelligence, see Ref. [2]) and Astrobiology
(see Ref. [3]). Devised in 1961, the Drake equation was the
first scientific attempt to estimate the number N of Extra-
Terrestrial civilizations in the Galaxy with which we might
come in contact. Frank D. Drake (see Ref. [4]) proposed it as
the product of seven factors:

N¼NsU f pUneU f lU f iU f cU f L ð1Þ
where
1)
 Ns is the estimated number of stars in our Galaxy.

2)
 fp is the fraction (¼ percentage) of such stars that have

planets.

3)
 ne is the number “Earth-type” such planets around the

given star; in other words, ne is number of planets, in a
given stellar system, on which the chemical conditions
exist for life to begin its course: they are “ready for life”.
4)
 fl is fraction (¼ percentage) of such “ready for life”
planets on which life actually starts and grows up (but
not yet to the “intelligence” level).
5)
 fi is the fraction (¼ percentage) of such “planets with
life forms” that actually evolve until some form of
“intelligent civilization” emerges (like the first, historic
human civilizations on Earth).
6)
 fc is the fraction (¼ percentage) of such “planets with
civilizations” where the civilizations evolve to the point
of being able to communicate across the interstellar
distances with other (at least) similarly evolved civili-
zations. As far as we know in 2015, this means that they
must be aware of the Maxwell equations governing
radio waves, as well as of computers and radio astron-
omy (at least).
7)
 fL is the fraction of galactic civilizations alive at the time
when we, poor humans, attempt to pick up their radio
signals (that they throw out into space just as we have
done since 1900, when Marconi started the transatlan-
tic transmissions). In other words, fL is the number of
civilizations now transmitting and receiving, and this
implies an estimate of “how long will a technological
civilization live?” that nobody can make at the
moment. Also, are they going to destroy themselves
in a nuclear war, and thus live only a few decades of
technological civilization? Or are they slowly becoming
wiser, reject war, speak a single language (like English
today), and merge into a single “nation”; thus living in
peace for ages? Or will robots take over one day making
“flesh animals” disappear forever (the so-called “post-
biological universe”)?
No one knows…
But let us go back to the Drake equation (1).
In the fifty years of its existence, a number of suggestions

have been put forward about the different numeric values of
its seven factors. Of course, every different set of these seven
input numbers yields a different value for N, and we can
endlessly play that way. But we claim that these are like…
children plays!
3. Transition from the classical to the Statistical Drake
equation

We claim the classical Drake equation (1), as we shall call
it from now on to distinguish it from our statistical Drake
equation to be introduced in the coming sections, well, the
classical Drake equation is scientifically inadequate in one
regard at least: it just handles sheer numbers and does not
associate an error bar to each of its seven factors. At the very
least, we want to associate an error bar to each input variable
appearing on the right-hand side of (1).

Well, we have thus reached STEP ONE in our improve-
ment of the classical Drake equation: replace each sheer
number by a probability distribution!
4. Step 1: letting each factor become a random variable

In this paper we adopt the notations of the great book
“Probability, Random Variables and Stochastic Processes”
by Athanasios Papoulis (1921–2002), now re-published as
Papoulis-Pillai, Ref. [5]. The advantage of this notation is
that it makes a neat distinction between probabilistic (or
statistical: it is the same thing here) variables, always
denoted by capitals, from non-probabilistic (or “determi-
nistic”) variables, always denoted by lower-case letters.
Adopting the Papoulis notation also is a tribute to him by
this author, who was a Fulbright Grantee in the United
States with him at the Polytechnic Institute (now Poly-
technic University) of New York in the years 1977–1979.
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We thus introduce seven new (positive) random vari-
ables Di (“D” from “Drake”) defined as

D1 ¼Ns

D2 ¼ f p

D3 ¼ ne

D4 ¼ f l
D5 ¼ f

D6 ¼ f c

D7 ¼ f L

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2Þ

so that our Statistical Drake equation may be simply
rewritten as

N¼ ∏
7

i ¼ 1
Di : ð3Þ

Of course, N now becomes a (positive) random variable
too, having its own (positive) mean value and standard
deviation. Just as each of the Di has its own (positive)
mean value and standard deviation…

… the natural question then arises: how are the seven
mean values on the right related to the mean value on
the left?

… and how are the seven standard deviations on the
right related to the standard deviation on the left?

Just take the next step…

5. Step 2: introducing logs to change the product into a sum

Products of random variables are not easy to handle in
probability theory. It is actually much easier to handle
sums of random variables, rather than products, because:
1)
 The probability density of the sum of two or more ind-
ependent random variables is the convolution of the rele-
vant probability densities (worry not about the equations,
right now).
2)
 The Fourier transform of the convolution simply is the
product of the Fourier transforms (again, worry not
about the equations, at this point).

So, let us take the natural logs of both sides of the
Statistical Drake equation (3) and change it into a sum:

ln Nð Þ ¼ ln ∏
7

i ¼ 1
Di

 !
¼
X7
i ¼ 1

ln Dið Þ : ð4Þ

It is now convenient to introduce eight new (positive)
random variables defined as follows:

Y ¼ ln Nð Þ
Yi ¼ ln Dið Þ i¼ 1; :::;7:

(
ð5Þ

Upon inversion, the first equation of (5) yields an
important equation that will be used in the sequel:

N¼ eY : ð6Þ
We are now ready to take Step 3.
6. Step 3: the transformation law of random variables

So far we did not mention at all the problem: “which
probability distribution shall we attach to each of the
seven (positive) random variables Di?”

It is not easy to answer this question because we do
not have the least scientific clue to what probability
distributions fit at best to each of the seven points listed
in Section 2.

Yet, at least one trivial error must be avoided: claiming
that each of those seven random variables must have a
Gaussian (i.e. normal) distribution. In fact, the Gaussian
distribution, having the well-known bell-shaped probabil-
ity density function

f X x; μ; σð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e� x� μð Þ2

2 σ2 σZ0ð Þ ð7Þ

has its independent variable x ranging between �1 and
1 and so it can apply to a real random variable X only, and
never to positive random variables like those in the sta-
tistical Drake equation (3).

Searching again for probability density functions that
represent positive random variables, an obvious choice
would be the gamma distributions (see, for instance,
Ref. [6]). However, we discarded this choice too because
of a different reason: keep in mind that, according to (5),
once we selected a particular type of probability density
function (pdf) for the last seven Di of Eq. (5), then we must
compute the (new and different) pdf of the logs of such
random variables. And the pdf of these logs certainly is not
gamma-type any more.

It is high time now to remind the reader of an important
theorem that is proved in probability courses, but, unfortu-
nately, does not seem to have a specific name. It is the
transformation law (so we shall call it, see, for instance,
Ref. [5], pages 130–131) allowing us to compute the pdf of
a certain new random variable Y that is a known function
Y ¼ g Xð Þ of another random variable X having a known pdf.
In other words, if the pdf f X xð Þ of a certain random variable X
is known, then the pdf f Y yð Þ of the new random variable Y,
related to X by the functional relationship

Y ¼ g Xð Þ ð8Þ

can be calculated according to the following rule:
1)
 First invert the corresponding non-probabilistic equa-
tion y¼ g xð Þ and denote by xi yð Þ the various real roots
resulting from this inversion.
2)
 Second, take notice whether these real roots may be
either finitely- or infinitely-many, according to the nat-
ure of the function y¼ g xð Þ.
3)
 Third, the probability density function of Y is then given
by the (finite or infinite) sum

f Y yð Þ ¼
X
i

f X xi yð Þð Þ
g0 xi yð Þð Þ
�� �� ð9Þ

where the summation extends to all roots xi yð Þ and
g0 xi yð Þð Þ
�� �� is the absolute value of the first derivative of
g xð Þ where the ith root xi yð Þ has been replaced instead
of x.



C. Maccone / Acta Astronautica 115 (2015) 277–285280
Since we must use this transformation law to transfer
from the Di to the Yi ¼ ln Dið Þ, it is clear that we need to
start from a Di pdf that is as simple as possible. The gamma
pdf is not responding to this need because the analytic
expression of the transformed pdf is very complicated.
Also, the gamma distribution has two free parameters in it,
and this “complicates” its application to the various mean-
ings of the Drake equation. In conclusion, we discarded the
gamma distributions and confined ourselves to the much
simpler and much more practical uniform distribution
instead, as shown in Section 7.
7. Step 4: assuming the easiest input distribution for each
Di: the uniform distribution

Let us now suppose that each of the seven Di is distributed
UNIFORMLY in the interval ranging from the lower limit aiZ
0 to the upper limit biZai.

This is the same as saying that the probability density
function of each of the seven Drake random variables Di

has the equation

f uniform_Di
¼ 1
bi�ai

with 0rairxrbi ð10Þ

that follows at once from the normalization conditionZ bi

ai
f uniform_Di

xð Þ dx¼ 1 : ð11Þ

Let us now consider the mean value of such uniform Di,
defined by

uniform_Di
� �¼ Z bi

ai
x f uniform_Di

xð Þ dx¼ 1
bi�ai

Z bi

ai
x dx

¼ 1
bi�ai

x2

2

� �bi
ai

¼ bi
2�ai2

2 bi�aið Þ ¼
aiþbi
2

:

By words (as it is intuitively obvious): the mean value of
the uniform distribution simply is the mean of the lower
plus upper limit of the variable range

uniform_Di
� �¼ aiþbi

2
: ð12Þ

In order to find the variance of the uniform distribu-
tion, we first need finding the second moment

uniform_Di
2

D E
¼
Z bi

ai
x2 f uniform_Di

xð Þ dx

¼ 1
bi�ai

Z bi

ai
x2 dx¼ 1

bi�ai

x3

3

� �bi
ai

¼ bi
3�ai3

3 bi�aið Þ

¼
bi�aið Þ ai2þaibiþbi

2
� 	
3 bi�aið Þ ¼ ai2þaibiþbi

2

3
:

The second moment of the uniform distribution is thus

uniform_Di
2

D E
¼ ai2þaibiþbi

2

3
: ð13Þ
From (12) and (13) we may now derive the variance of
the uniform distribution

σ2uniform_Di
¼ uniform_Di

2
D E

� uniform_Di
� �2

¼ ai2þaibiþbi
2

3
� aiþbið Þ2

4
¼ bi�aið Þ2

12
: ð14Þ

Upon taking the square root of both sides of (14), we
finally obtain the standard deviation of the uniform dis-
tribution:

σuniform_Di
¼ bi�ai

2
ffiffiffi
3

p : ð15Þ

We now wish to perform a calculation that is mathe-
matically trivial, but rather unexpected from the intuitive
point of view, and very important for our applications to
the Statistical Drake equation. Just consider the two
simultaneous Eqs. (12) and (15)

uniform_Di
� �¼ ai þbi

2

σuniform_Di
¼ bi �ai

2
ffiffi
3

p :

8<
: ð16Þ

Upon inverting this trivial linear system, one finds

ai ¼ uniform_Di
� �� ffiffiffiffi

3
p

σuniform_Di

bi ¼ uniform_Di
� �þ ffiffiffiffi

3
p

σuniform_Di
:

8<
: ð17Þ

This is of paramount importance for our application the
Statistical Drake equation inasmuch as it shows that: if one
(scientifically) assigns the mean value and standard devia-
tion of a certain Drake random variable Di, then the lower
and upper limits of the relevant uniform distribution are
given by the two Eq. (17), respectively.

In other words, there is a factor of
ffiffiffi
3

p
¼ 1:732 included

in the two Eq. (17) that is not obvious at all to human
intuition, but must indeed be taken into account.

The application of this result to the Statistical Drake
equation is discussed in the next section.

8. Step 5: computing the logs of the 7 uniformly
distributed Drake random variables Di

Intuitively speaking, the natural log of a uniformly
distributed random variable may not be another uniformly
distributed random variable! This is obvious from the
trivial diagram of y¼ ln xð Þ shown in Fig. 1.

So, if we have a uniformly distributed random varia-
ble Di with lower limit ai and upper limit bi, the random
variable

Yi ¼ ln Dið Þ i¼ 1; :::;7 ð18Þ
must have its range limited in between the lower limit ln
(ai) and the upper limit ln(bi). In other words, these are the
lower and upper limits of the relevant probability density
function f Yi

yð Þ. But what is the actual analytic expression
of such a pdf? To find it, we must resort to the gene-
ral transformation law for random variables, defined by
Eq. (9). Here we obviously have

y¼ g xð Þ ¼ ln xð Þ: ð19Þ
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Fig. 1. The simple function y¼ ln xð Þ:
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That, upon inversion, yields the single root

x1 yð Þ ¼ x yð Þ ¼ ey: ð20Þ
On the other hand, differentiating (19) one gets

g0 xð Þ ¼ 1
x

and g0 x1 yð Þð Þ ¼ 1
x1 yð Þ ¼

1
ey

ð21Þ

where (20) was already used in the last step. By virtue of
the uniform probability density function (10) and of (21),
the general transformation law (9) finally yields

f Y yð Þ ¼
X
i

f X xi yð Þð Þ
g' xi yð Þð Þ
�� ��¼ 1

bi�ai
U
1
1
ey
�� ��¼ ey

bi�ai
: ð22Þ

In other words, the requested pdf of Yi is

f Y yð Þ ¼ ey

bi�ai
i¼ 1; :::;7 with ln aið Þryr ln bið Þ: ð23Þ

Probability density functions of the natural logs of all the
uniformly distributed Drake random variables Di.

This is indeed a positive function of y over the interval
ln aið Þryr ln bið Þ, as for every pdf, and it is easy to see that
its normalization condition is fulfilled:Z ln bið Þ

ln aið Þ
f Y yð Þdy¼

Z ln bið Þ

ln aið Þ

ey

bi�ai
dy¼ eln bið Þ �eln aið Þ

bi�ai
¼ 1: ð24Þ

Next we want to find the mean value and standard
deviation of Yi, since these play a crucial role for future
developments. The mean value Yih i is given by

Yih i ¼
Z ln bið Þ

ln aið Þ
yU f Y yð Þdy¼

Z ln bið Þ

ln aið Þ

yUey

bi�ai
dy

¼ bi ln bið Þ�1

 ��ai ln aið Þ�1


 �
bi�ai

: ð25Þ

This is thus the mean value of the natural log of all the
uniformly distributed Drake random variables Di

Yih i ¼ ln Dið Þ� �¼ bi ln bið Þ�1

 ��ai ln aið Þ�1


 �
bi�ai

: ð26Þ

In order to find the variance also, we must first
compute the mean value of the square of Yi, that is

Yi
2

D E
¼
Z ln bið Þ

ln aið Þ
y2 U f Y yð Þdy¼

Z ln bið Þ

ln aið Þ

y2 Uey

bi�ai
dy
¼
bi ln2 bið Þ�2 ln bið Þþ2
h i

�ai ln2 aið Þ�2 ln aið Þþ2
h i

bi�ai
:

ð27Þ

The variance of Yi¼ ln(Di) is now given by (27) minus
the square of (26), that, after a few reductions, yield:

σ2Yi
¼ σ2ln Dið Þ ¼ 1�aibi ln bið Þ� ln aið Þ
 �2

bi�aið Þ2
: ð28Þ

Whence the corresponding standard deviation

σYi
¼ σln Dið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�aibi ln bið Þ� ln aið Þ
 �2

bi�aið Þ2

vuut : ð29Þ

Let us now turn to another topic: the use of Fourier
transforms, that in probability theory, are called “charac-
teristic functions”. Following again the notations of Papou-
lis (Ref. [5]) we call “characteristic function”, ΦYi ζð Þ, of an
assigned probability distribution Yi, the Fourier transform
of the relevant probability density function, that is (with
j¼

ffiffiffiffiffiffiffiffi
�1

p
)

ΦYi
ζð Þ ¼

Z 1

�1
ejζy f Yi

yð Þ dy: ð30Þ

The use of characteristic functions simplifies things
greatly. For instance, the calculation of all moments of a
known pdf becomes trivial if the relevant characteristic
function is known, and greatly simplified also are the
proofs of important theorems of statistics, like the Central
Limit Theorem that we will use in Section 9. Another
important result is that the characteristic function of the
sum of a finite number of independent random variables is
simply given by the product of the corresponding char-
acteristic functions. This is just the case we are facing in
the Statistical Drake equation (3) and so we are now led to
find the characteristic function of the random variable Yi,
i.e.

ΦYi ζð Þ ¼
Z 1

�1
ejζy f Yi

yð Þ dy¼
Z ln bið Þ

ln aið Þ
ejζy

ey

bi�ai
dy

¼ 1
bi�ai

Z ln bið Þ

ln aið Þ
e 1þ jζð Þy dy¼ 1

bi�ai
U

1
1þ jζ

e 1þ jζð Þy
h iln bið Þ

n aið Þ

¼ e 1þ jζð Þln bið Þ �e 1þ jζð Þln aið Þ

bi�aið Þ 1þ jζð Þ ¼ b1þ jζ
i �a1þ jζ

bi�aið Þ 1þ jζð Þ: ð31Þ

Thus, the characteristic function of the natural log of the
Drake uniform random variable Di is given by

ΦYi
ζð Þ ¼ b1þ jζ

i �a1þ jζ

bi�aið Þ 1þ jζð Þ: ð32Þ

9. The central limit theorem (CLT) of statistics

Indeed there is a good, approximating analytical
expression for f N yð Þ, and this is the following lognormal
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probability density function

f N y; μ; σð Þ ¼ 1
y
U

1ffiffiffiffiffiffi
2π

p
σ
e� ln yð Þ � μð Þ2

2 σ2 yZ0; σZ0ð Þ ð33Þ

To understand why, we must resort to what is perhaps
the most beautiful theorem of Statistics: the Central Limit
Theorem (abbreviated CLT). Historically, the CLT was in
fact proven first in 1901 by the Russian mathematician
Alexandr Lyapunov (1857–1918), and later (1920) by the
Finnish mathematician Jarl Waldemar Lindeberg (1876–
1932) under weaker conditions. These conditions are
certainly fulfilled in the context of the Drake equation
because of the “reality” of the astronomy, biology and
sociology involved with it, and we are not going to discuss
this point any further here. A good, synthetic description
of the Central Limit Theorem (CLT) of Statistics is found at
the Wikipedia site (Ref. [7]) to which the reader is referred
for more details, such as the equations for the Lyapunov
and the Lindeberg conditions, making the theorem “rigor-
ously” valid.

Put in loose terms, the CLT states that, if one has a sum of
random variables even NOT identically distributed, this sum
tends to a normal distribution when the number of terms
making up the sum tends to infinity. Also, the normal dist-
ribution mean value is the sum of the mean values of the
addend random variables, and the normal distribution var-
iance is the sum of the variances of the addend random
variables.

Let us now write down the equations of the CLT in the
form needed to apply it to our Statistical Drake equation
(3). The idea is to apply the CLT to the sum of random vari-
ables given by (4) and (5) whatever their probability dist-
ributions can possibly be. In other words, the CLT applied to
the Statistical Drake equation (3) leads immediately to the
following three equations:
1)
 The sum of the (arbitrarily distributed) independent ran-
dom variables Yi makes up the new random variable Y.
2)
 The sum of their mean values makes up the new mean
value of Y.
3)
 The sum of their variances makes up the new variance
of Y.
In equations

Y ¼
X7
i ¼ 1

Yi

Yh i ¼
X7
i ¼ 1

Yih i

σ2Y ¼
X7
i ¼ 1

σ2Yi
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð34Þ

This completes our synthetic description of the CLT for
sums of random variables.
10. The lognormal distribution is the distribution of the
number N of extraterrestrial civilizations in the Galaxy

The CLT may of course be extended to products of random
variables upon taking the logs of both sides, just as we did in
Eq. (3). It then follows that the exponent random variable,
like Y in (6), tends to a normal random variable, and, as a
consequence, it follows that the base random variable, like N
in (6), tends to a lognormal random variable.

To understand this fact better in mathematical terms
consider again of the transformation law (9) of random
variables. The question is: what is the probability density
function of the random variable N in Eq. (6), that is, what is
the probability density function of the lognormal distribu-
tion? To find it, set

y¼ g xð Þ ¼ ex: ð35Þ
This, upon inversion, yields the single root

x1 yð Þ ¼ x yð Þ ¼ ln yð Þ: ð36Þ

On the other hand, differentiating (35) one gets

g0 xð Þ ¼ ex and g0 x1 yð Þð Þ ¼ eln yð Þ ¼ y: ð37Þ
where (21) was already used in the last step. The general
transformation law (9) finally yields

f N yð Þ ¼
X
i

f X xi yð Þð Þ
g' xi yð Þð Þ
�� ��¼ 1

y
�� ��f Y ln yð Þð Þ: ð38Þ

Therefore, replacing the probability density on the right
by virtue of the well-known normal (or Gaussian) dis-
tribution given by Eq. (7), the lognormal distribution of Eq.
(33) is found, and the derivation of the lognormal dis-
tribution from the normal distribution is proved.

Table 1 summarizes all the properties of the lognormal
distribution, whose demonstrations may be found in
statistical textbooks (for instance see refs. [7–9]). The last
two lines in Table 1, however, are about our own discovery
of Eqs. (26) and (28) yielding μ and σ2 of the lognormal
distribution of the output of the statistical Drake (and
Seager) equation when all inputs are supposed to be
uniformly distributed and both the mean value and
standard deviation of each input is assigned. Remember
that this mean value and standard deviation may be
immediately converted into the uniform distribution lower
and upper values thanks to the two Eq. (17).

11. Data enrichment principle

It should be noticed that any positive number of random
variables in the statistical Drake equation is compatible with
the CLT. So, our generalization allows for many more factors
to be added in the future as long as more refined scientific
knowledge about each factor becomes known to scientists.
This capability to make room for more future factors in the
statistical Drake equation we call “Data Enrichment Princi-
ple”, and we regard it as the key to more profound future
results in the fields of Astrobiology ad SETI.



Table 1
Summary of the properties of the lognormal distribution that applies to the random variable N¼number of ET communicating civilizations in the Galaxy.

Random variable N¼number of communicating ET civilizations in Galaxy

Probability distribution Lognormal
Probability density function

f N n; μ; σð Þ ¼ 1
nU

1ffiffiffiffi
2π

p
σ
e� ln nð Þ � μð Þ2

2 σ2 nZ0; σZ0ð Þ
Mean value Nh i ¼ eμ e

σ2
2

Variance σ2N ¼ e2μ eσ
2

eσ
2 �1

� 	
Standard deviation σN ¼ eμ e

σ2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eσ2 �1

p

All the moments, i.e. kth moment Nk
D E

¼ ekμ ek
2 σ2

2

Mode (¼abscissa of the lognormal peak) nmod e ¼ npeak ¼ eμ e� σ2

Value of the mode peak f N nmodeð Þ ¼ 1ffiffiffiffi
2π

p
σ
Ue�μ Ue

σ2
2

Median (¼fifty–fifty probability value for N) median¼ eμ

Skewness K3

K2ð Þ32
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eσ2 �1

p
eσ

2 þ2
� 	

Kurtosis K4

K2ð Þ2 ¼ e4 σ2 þ2 e3 σ2 þ3 e2 σ2 �6

Expression of μ in terms of the lower (ai) and upper (bi) limits
of the Drake uniform input random variables Di

μ¼ P7
i ¼ 1

Yih i ¼ P7
i ¼ 1

bi ln bið Þ�1½ ��ai ln aið Þ�1½ �
bi �ai

� 	
:

Expression of σ2 in terms of the lower (ai) and upper (bi) limits
of the Drake uniform input random variables Di

σ2 ¼ P7
i ¼ 1

σ2Yi
¼ P7

i ¼ 1
1�ai bi ln bið Þ� ln aið Þ½ �2

bi �aið Þ2

� 
:
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12. The Statistical Seager Equation

We now come to consider the Statistical Seager Equa-
tion. As described in the Abstract of this paper, in 2013,
MIT astrophysicist Sara Seager introduced what is now
called the Seager equation (see Refs. [20,21]): it expresses
the number N of exoplanets with detectable signs of life as
the product of six factors:
1)
 Ns¼the number of stars observed,

2)
 fQ¼the fraction of stars that are quiet,

3)
 fHZ¼the fraction of stars with rocky planets in the

Habitable Zone,

4)
 fO¼the fraction of those planets that can be observed,

5)
 fL¼the fraction that have life,

6)
 fS¼the fraction on which life produces a detectable

signature gas.
That is

N¼NsU f Q U f HZ U f OU f LU f S ð39Þ

This we call the “classical Seager equation”.
Mathematically speaking, Eq. (39) is exactly the same

thing as Eq. (1): only the words change, and, of course, so
does its scientific meaning.

Mathematically, one may thus immediately apply to
(39) the full string of mathematical theorems that we
described in all Eqs. (2)–(32) of this paper.

The first such step is clearly the transformation of the
classical Seager equation (39) into the Statistical Seager
Equation (looking the same, mathematically), having all
numeric inputs replaced by positive random variables. No
more comments are necessary.

The second step is asking the two questions:
1)
 What is the probability distribution of each of the six
input positive random variables in (39)?
2)
 And what is the probability distribution of the resulting
output N?

Our answers to these two questions are:
1)
 No analytical solution exists as long as the number of
Input random variables is finite. Only numeric calcula-
tions may be done, but this requires writing a numeric
code, that this author could not and would not write
down because is he a mathematical physicist and not a
computer programmer.
2)
 However, if we let the number of input random
variables approach infinity (i.e. if we consider a high
number of input random variables, like five to ten or
even more (“how many” might be discussed later) then
the solution of both the statistical Drake equation (1)
and the Statistical Seager Equation (3) is immediate. In
both cases the probability distribution of the output
random variable N is a Lognormal Distribution:
a)
 Its real parameter μ is given by the sum of the mean
values of all input random variables, and
b)
 Its positive parameter σ2 is given by the sum of the
variances of all input random variables, whatever their
probability distribution might possibly be.

This is the result of applying the Central Limit Theorem
of Statistics to both the Drake and Seager equations.

13. The extremely important particular case when the
input random variables are uniform

Now we turn to the particular case of our theory when
all the input random variables are uniform random vari-
ables. This case we regard as “extremely important” for all
practical applications of both the Drake and the Seager
statistical equations inasmuch as it is the only case when
analytic formulae do exist expressing the two lognormal
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parameters μ and σ directly in terms of the lower and
upper limits of all the uniform input random variables.

In fact, define by
1)
 ai the real and positive number representing the
LOWER LIMIT of the range of the ith uniform input
random variable.
2)
 bi the real and positive number representing the
UPPER LIMIT of the range of the ith uniform input
random variable.
3)
 Clearly, it is assumed bi4ai.
Then
4)
 The mean value of the ith uniform input random
variable is (obviously) given by (12), that is

Uniform_Di
� �¼ aiþbi

2
ð40Þ
5)
 The standard deviation of the ith uniform input ran-
dom variable is (less obviously) given by (15), that is

σUniform_Di
¼ bi�ai

2
ffiffiffi
3

p : ð41Þ

Above all, one has

6)
 The probability density function (pdf) of the output

random variable N is the lognormal pdf (33), that is:

f N nð Þ ¼ 1
n
U

1ffiffiffiffiffiffiffi
2π

p
σ
e� ln nð Þ � μð Þ2

2 σ2 nZ0ð Þ ð42Þ
7)
 The real and positive parameter μ appearing in the
lognormal pdf (33) is expressed directly in terms of
all the known ai and bi by Eq. (26), that is

μ¼
Xnumber_of_inputs

i ¼ 1

bi ln bið Þ�1

 ��ai ln aið Þ�1


 �
bi�ai

� 
:

ð43Þ
8)
 The real and positive parameter σ2 appearing in the
lognormal pdf (33) is expressed directly in terms of
all the known ai and bi by Eq. (28), that is

σ2 ¼
Xnumber_of_inputs

i ¼ 1

1�ai bi ln bið Þ� ln aið Þ
 �2
bi�aið Þ2

 !
: ð44Þ
9)
 In addition to providing the pdf of N explicitly by virtue
of the three Eqs. (42)–(44), this case of the all-uniform
input random variables also is “realistic” in that the
uniform probability distribution is “the most uncertain
one” in the sense of Shannon's Information Theory.
This is intuitively obvious (“when you do not know
where to go, you look around and all directions are
equal to each other, i.e. your probability distribution in
the azimuth is uniform between 0 and 2 π). But it may
also be rigorously proven by applying the method of
the Lagrange multipliers to the definition of Shannon's
Entropy, as shown in the Appendix to this paper.
10)
 All the statistical properties of the lognormal output
random variable N may be found analytically and are
listed in Table 1.
this author made back in 2008 about the Statistical Drake

This completes our summary of the discoveries that

Equation and so necessarily also about the 2013 Statistical
Seager Equation also. Especially useful is the simple case
when all input variables are Uniformly distributed: then,
the lognormal pdf of N is given by Eqs. (42)–(44).

14. Conclusion

The conclusion of this paper is that this author would
respectfully advise Professor Sara Seager and her MIT
Team to make use of Eqs. (42)–(44) in order to find the
lognormal pdf of the number N of exoplanets with detect-
able signs of life, having previously estimated all the ai and
bi numerically.

This research work could be part of the Phase A or B
studies for the NASA planned TESS space mission,
described at the web sites 〈http://tess.gsfc.nasa.gov/〉 and
〈http://en.wikipedia.org/wiki/Transiting_Exoplanet_Survey_
Satellite〉).
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Appendix
Proof. of Shannon's 1948 Theorem stating that the Uni-
form distribution is the “most uncertain” one over any
Finite range of values.

As it is well known, the Shannon entropy of any
probability density function p xð Þ is given by the integral

Shannon_Entropy_of_p xð Þ ¼ �
Z 1

�1
p xð Þ log p xð Þ dx: ð45Þ

In modern textbooks this is also called Shannon differen-
tial entropy.

Now consider the case when a probability density func-
tion p xð Þ is limited to a finite interval arxrb. This is
obviously the case with any physical positive random vari-
able, such as the number N of extraterrestrial communicating
civilizations in the Galaxy. We now wish to prove that for any
such finite random variable the maximum entropy distribution
is the UNIFORM distribution over arxrb.

Shannon did not bother to prove this simple theorem in
his 1948 papers since he probably regarded it as just too
trivial. But we prefer to point out this theorem since, in the
language of the statistical Drake equation, it sounds like:
“Since we don’t know what the probability distribution of
any one of the Drake random variables Di is, it is safer to
assume that each of them has the maximum possible

http://tess.gsfc.nasa.gov/
http://en.wikipedia.org/wiki/Transiting_Exoplanet_Survey_Satellite
http://en.wikipedia.org/wiki/Transiting_Exoplanet_Survey_Satellite
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entropy over arxrb, i.e., that Di is UNIFORMLY distrib-
uted there”.

The proof of this theorem is as follows:
1)
 Start by assuming airxrbi.

2)
 Then form the linear combination of the entropy

integral plus the normalization condition for Di

δ

Z bi

ai
�p xð Þlog p xð Þþλp xð Þ
 �

dx¼ 0 ð46Þ

where λ is a Lagrange multiplier.
Performing the variation, i.e. differentiating with res-

pect to p xð Þ, one finds

� log p xð Þ�1þλ¼ 0 ð47Þ
that is

p xð Þ ¼ eλ�1: ð48Þ
Applying the normalization condition (constraint) to

the last expression for p xð Þ yields

1¼
Z bi

ai
p xð Þ dx¼

Z bi

ai
eλ�1 dx¼ eλ�1

Z bi

ai
dx¼ eλ�1 bi�aið Þ

ð49Þ
that is

eλ�1 ¼ 1
bi�ai

ð50Þ

and finally, from (48) and (50)

p xð Þ ¼ 1
bi�ai

with airxrbi: ð51Þ

showing that the maximum-entropy probability distribu-
tion over any FINITE interval airxrbi is just the UNI-
FORM distribution.
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